Triangulated Categories of Matrix Factorizations for Regular Systems of Weights with Ε = − 1

نویسندگان

  • HIROSHIGE KAJIURA
  • KYOJI SAITO
  • ATSUSHI TAKAHASHI
چکیده

Abstract. We construct a full strongly exceptional collection in the triangulated category of graded matrix factorizations of a polynomial associated to a non-degenerate regular system of weights whose smallest exponents are equal to −1. In the associated Grothendieck group, the strongly exceptional collection defines a root basis of a generalized root system of sign (l, 0, 2) and a Coxeter element of finite order, whose primitive eigenvector is a regular element in the expanded symmetric domain of type IV with respect to the Weyl group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Factorizations and Representations of Quivers I

This paper introduces a mathematical definition of the category of D-branes in Landau-Ginzburg orbifolds in terms of A∞-categories. Our categories coincide with the categories of (gradable) matrix factorizations for quasi-homogeneous polynomials. After setting up the necessary definitions, we prove that our category for the polynomial x is equivalent to the derived category of representations o...

متن کامل

Weighted Projective Lines Associated to Regular Systems of Weights of Dual Type

We associate to a regular system of weights a weighted projective line over an algebraically closed field of characteristic zero in two different ways. One is defined as a quotient stack via a hypersurface singularity for a regular system of weights and the other is defined via the signature of the same regular system of weights. The main result in this paper is that if a regular system of weig...

متن کامل

Orlov’s Equivalence and Tensor Products: from Sheaves to Matrix Factorizations and Back

A special case of a theorem due to Orlov states that for a hypersurface X ⊂ Pn−1 of degree n given by the equation W = 0, there exists an equivalence between the bounded derived category D(cohX) of coherent sheaves on X and the homotopy category HMF(W ) of graded matrix factorizations. We first give a description of this result, and present some methods for doing calculations with it. In the la...

متن کامل

WZ factorization via Abay-Broyden-Spedicato algorithms

Classes of‎ ‎Abaffy-Broyden-Spedicato (ABS) methods have been introduced for‎ ‎solving linear systems of equations‎. ‎The algorithms are powerful methods for developing matrix‎ ‎factorizations and many fundamental numerical linear algebra processes‎. ‎Here‎, ‎we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW‎ ‎factorizations of a nonsingular matrix as well as...

متن کامل

Matrix Factorizations and Representations of Quivers Ii : Type Ade Case

We study a triangulated category of graded matrix factorizations for a polynomial of type ADE. We show that it is equivalent to the derived category of finitely generated modules over the path algebra of the corresponding Dynkin quiver. Also, we discuss a special stability condition for the triangulated category in the sense of T. Bridgeland, which is naturally defined by the grading.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007